新闻中心

完胜超级计算机!Sci永恒之塔游戏攻略图文ence:谷歌AI新模型预测天气又快又准

人工智能AI公司Google DeepMind开发的完胜机器学习模型GraphCast,在“3至10天的超级测天中期气象预测领域”展现了超越传统模型和其他AI方法的准确率和效率。相关研究11月14日发表于《科学》。计算机

“GraphCast目前在AI模型的谷歌竞赛中处于领先地位。”美国加州大学洛杉矶分校计算机科学家Aditya Grover说。新模型预

预测天气是气又一项复杂且耗费大量能源的任务。全球气象机构使用的快又标准方法被称为数值天气预报(NWP),是完胜一种基于物理原理的数学模型。它利用超级计算机处理来自全球的超级测天浮标、卫星和气象站天气数据。计算机这些计算能准确描绘出热量、谷歌空气和水蒸气如何在大气中移动,新模型预但其运行是气又昂贵且能源密集型的。

为降低天气预测的快又资金和能源成本,几家科技公司开发了机器学习模型,完胜可以根据过去和当前的天气数据快速预测未来的全球天气状况。其中包括DeepMind、英伟达(Nvidia)和华为,以及一系列初创企业。

欧洲中期天气预报中心(ECMWF)的Matthew Chantry表示,机器学习正在推动天气预报领域的一场革命。美国科罗拉多州大气合作研究所数据可视化研究员Jacob Radford说,AI模型的运行速度比传统的NWP模型快1000到10000倍,这能为解释和传播预测结果留出更多时间。

研究人员首先利用物理模型对1979年至2017年的全球天气预测来训练GraphCast,这使得后者能够了解诸如气压、风、温度和湿度等天气变量之间的联系。

经过训练的模型根据全球天气的“当前”状态和6小时前的天气预报来预测未来6小时的天气。早期的预测被反馈到模型中,使其能够对未来天气作出进一步的估计。DeepMind的研究人员发现,GraphCast可以根据2018年的全球天气预测,在不到1分钟的时间预测未来10天的天气,而且比ECMWF的高分辨率预报系统(HRES)更准确,后者是NWP的一个版本,需要数小时才能得出结果。

DeepMind计算机科学家Remi Lam表示,在完成的1200次预测中,GraphCast在99%以上的预测中都优于HRES;而在大气的所有层面,该模型90%的天气预报都优于HRES。

GraphCast预测了靠近地球表面的5个天气变量如离地面2米的气温,以及离地面更远的6个大气变量如风速。Chantry指出,GraphCast在预测恶劣天气事件方面也被证明是有用的,如热带气旋的路径,以及极端高温和低温事件。

Chantry指出,虽然基于某些指标的评估,GraphCast的性能优于研究中的其他模型,但未来使用其他指标对其性能进行评估可能会导致不同的结果。

“机器学习模型仍处于实验阶段,它不会完全取代传统方法,而是可以提高标准方法不擅长的特定类型的天气预测质量,比如预测几小时内的降雨量。”Chantry说,“我预计,人们还需要2年到5年的时间,才能利用机器学习方法进行预测,进而在现实世界中作出决策。”

与此同时,机器学习方法的问题必须得到解决。Grover说,与NWP模型不同,研究人员不能完全理解像GraphCast这样的AI是如何工作的,因为决策过程发生在AI的“黑匣子”中。“这让人质疑它们的可靠性。”同时,AI模型也有放大训练数据偏差的风险,并且需要大量的能量进行训练,尽管它们消耗的能量比NWP模型要少。

声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。

上一篇:AI人形机器人研究:与汽车行业联动,主机厂押注人形机器人赛道 下一篇:!!!产品栏目未指定文章/信息库!!!

Copyright © 2023 延安市超声设备有限公司 版权所有   网站地图